How To Make SLIC Superpixel Algorithm With C#

SLIC superpixel segmentation is a modern operation for reducing irrelevant detail for shortening computational time in further processing.


Andraz Krzisnik
How To Make SLIC Superpixel Algorithm With C#

Simple linear iterative clustering or SLIC is a superpixel segmentation method for reducing irrelevant image data. Furthermore, the idea behind it is to replace standard pixel grid with a grid of regions. This way we create an image with less primitive units while preserving a descent amount of detail.

Each region, or superpixel, holds perceptually more meaningful image information than individual pixels. Therefore, since we reduce irrelevant detail, their purpose is to shorten computational time for further processing.

However, like any other image processing operation, this one also depends on the problem we’re trying to solve.

For example, it’s not acceptable for images, where we need to detect detail on pixel-level resolution, like the ones we use in medical examinations. But, it works well for those where small loss of detail doesn’t affect final results.

The way SLIC segmentation preserves detail is by adhering boundaries of superpixels to shapes of objects and background. Therefore it preserves details of shapes, while reducing color detail of the image overall.

In case we wanted to preserve a lot of detail, we could just increase the amount of superpixels. Since each of them will represent a region of individual pixels, our resulting image would still save up on space and computational time for further processing.

How does SLIC superpixel segmentation work?

SLIC operation is a modification of k-means clustering, which we already covered in another article. In case you’re not familiar with it, I would suggest you check it out. This tutorial will be a walk in the park if you understand how that works.

First of all, we’re going to represent each pixel with a feature vector, which will hold color and spatial information. Therefore, each vector will hold 5 values, first three for RGB values and last two for horizontal and vertical position.

Step by step SLIC superpixel segmentation process

To begin with the process, we need to initialize it by choosing starting pixels for superpixel centers. In order to do that, we need to sample them so we end up with a grid of these points.

Furthermore, we’re going to use the following formula to compute this interval. Or in other words distance between each center in x and y position.

formula for sampling interval for SLIC superpixel segmentation
Sampling interval for SLIC segmentation

For some context ntp represents the number of all pixels in the image and nsp

While we’re sampling these starting superpixel centers, we need to check for the lowest gradient point in 3×3 neighborhood. Reason for that is so we don’t set our centers on noisy pixels. Therefore, I used Sobel edge detection operation to find those.

Next step is assigning pixels to their closest centers by computing pixel distance in a 2sx2s neighborhood around each center.

We’re going to use the following formula to compute distances between superpixel centers and pixels around them.

Distance formula for SLIC superpixel segmentation
Distance formula

After we assigned pixels to each center, we need to update the position and mean color values for each center.

Formula for mean values for each superpixel
Formula for mean values for each superpixel

Next step is to test whether we need to repeat the process from assigning pixels again or not. Therefore, we need to compute an error value. We can do that by summing Euclidean distances of all superpixel center values from current and previous steps.

In order to stop looping this whole process, we need to set a threshold. So when the error value will be lower or equal to it, algorithm will close the loop. I my case here I set it to error from previous step.

And for our final step we’re going to set each pixel their respective superpixel color.

Before and after SLIC superpixel segmentation result
Before and after the process

Code

public static Bitmap Superpixels(this Bitmap image, int nsp)
     {
         int w = image.Width;
         int h = image.Height;

         BitmapData image_data = image.LockBits(
             new Rectangle(0, 0, w, h),
             ImageLockMode.ReadOnly,
             PixelFormat.Format24bppRgb);

         int bytes = image_data.Stride * image_data.Height;
         byte[] buffer = new byte[bytes];

         Marshal.Copy(image_data.Scan0, buffer, 0, bytes);
         image.UnlockBits(image_data);

         int ntp = buffer.Length / 3;
         int s = (int)Math.Floor(Math.Sqrt((double)ntp / nsp));

         int[][] means = new int[nsp][];
         byte[] result = new byte[bytes];
         int sp = 0;

         //compute initial superpixel cluster centers
         for (int x = s / 2; x < w; x+=s)
         {
             for (int y = s / 2; y < h; y+=s)
             {
                 int position = x * 3 + y * image_data.Stride;

                 //compute lowest gradient
                 int lowest_grad = 99999;
                 for (int i = -1; i <= 1; i++)
                 {
                     for (int j = -1; j <= 1; j++)
                     {
                         int n_pos = position + i * 3 + j * image_data.Stride;
                         int grad = 0;
                         for (int k = -1; k <= 1; k++)
                         {
                             for (int l = -1; l <= 1; l++)
                             {
                                 int g_pos = n_pos + k * 3 + l * image_data.Stride;
                                 grad += buffer[g_pos] * (Filters.SobelHorizontal[k + 1, l + 1] + Filters.SobelVertical[k + 1, l + 1]);
                             }
                         }
                         if (lowest_grad > grad)
                         {
                             lowest_grad = grad;
                             means[sp] = new int[] { buffer[n_pos], x + i, y + j };
                         }
                     }
                 }

                 for (int c = 0; c < 3; c++)
                 {
                     result[means[sp][1] * 3 + means[sp][2] * image_data.Stride + c] = 255;
                 }
                 if (sp < nsp - 1)
                 {
                     sp++;
                 }
             }
         }

         int[] labels = new int[bytes];
         double[] distances = new double[bytes];
         for (int i = 0; i < bytes; i+=3)
         {
             labels[i] = -1;
             distances[i] = buffer.Length;
         }

         double error = new double();
         double cc = 20;
         while (true)
         {
             int[][] new_means = new int[nsp][];

             //assign samples to clusters
             for (int i = 0; i < nsp; i++)
             {
                 int m_pos = means[i][1] * 3 + means[i][2] * image_data.Stride;
                 int xe = 2 * s + means[i][1];
                 int xs = means[i][1] - 2 * s;
                 int ye = 2 * s + means[i][2];
                 int ys = means[i][2] - 2 * s;

                 for (int x = (xs < 0 ? 0 : xs); x < ((xe < w) ? xe : w); x++)
                 {
                     for (int y = (ys < 0 ? 0 : ys); y < (ye < h ? ye : h); y++)
                     {
                         int position = x * 3 + y * image_data.Stride;
                         double ds = Math.Sqrt(Math.Pow(x - means[i][1], 2) + Math.Pow(y - means[i][2], 2));
                         double dc = Math.Sqrt(Math.Pow(buffer[position] - means[i][0], 2)
                             + Math.Pow(buffer[position + 1] - means[i][0], 2)
                             + Math.Pow(buffer[position + 2] - means[i][0], 2));
                         double distance = dc + (cc / s) * ds;
                         if (distance < distances[position])
                         {
                             distances[position] = distance;
                             labels[position] = i;
                         }
                     }
                 }
             }

             //compute new means
             for (int i = 0; i < nsp; i++)
             {
                 new_means[i] = new int[3];
                 int samples = 0;
                 for (int x = 0; x < w; x++)
                 {
                     for (int y = 0; y < h; y++)
                     {
                         int position = x * 3 + y * image_data.Stride;
                         if (labels[position] == i)
                         {
                             new_means[i][0] += buffer[position];
                             new_means[i][1] += x;
                             new_means[i][2] += y;
                             samples++;
                         }
                     }
                 }

                 for (int j = 0; j < 3; j++)
                 {
                     new_means[i][j] /= samples;
                 }
             }

             //compute error
             double new_error = 0;
             for (int i = 0; i < nsp; i++)
             {
                 new_error += (int)Math.Sqrt(Math.Pow(means[i][0] - new_means[i][0], 2)
                     + Math.Pow(means[i][1] - new_means[i][1], 2)
                     + Math.Pow(means[i][2] - new_means[i][2], 2));
                 means[i] = new_means[i];
             }

             if (error < new_error)
             {
                 break;
             }
             else
             {
                 error = new_error;
             }
         }

         for (int i = 0; i < nsp; i++)
         {
             for (int j = 0; j < bytes; j+=3)
             {
                 if (labels[j] == i)
                 {
                     for (int c = 0; c < 3; c++)
                     {
                         result[j + c] = (byte)means[i][0];
                     }
                 }
             }
         }

         Bitmap res_img = new Bitmap(w, h);
         BitmapData res_data = res_img.LockBits(
             new Rectangle(0, 0, w, h),
             ImageLockMode.WriteOnly,
             PixelFormat.Format24bppRgb);
         Marshal.Copy(result, 0, res_data.Scan0, bytes);
         res_img.UnlockBits(res_data);

         return res_img;
     }

Conclusion

I hope this tutorial helped you understand how superpixel segmentation works.

You can also download the demo project and try it out yourself.

Show Comments (0)

Comments

Related Articles

Morphological Reconstruction

How To Make Geodesic Dilation And Erosion In Morphology

Geodesic dilation and erosion are fundamental morphological reconstruction algorithms which yield the same result if left to converge.

Posted on by Andraz Krzisnik
Region Splitting And Merging

How To Make Region Splitting And Merging Algorithm – C#

Region splitting and merging is a texture segmentation operation, where we use descriptors such as local mean intensity and standard deviation

Posted on by Andraz Krzisnik